3.493 \(\int \frac {\cos (c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=76 \[ \frac {2 b^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {b x}{a^2}+\frac {\sin (c+d x)}{a d} \]

[Out]

-b*x/a^2+sin(d*x+c)/a/d+2*b^2*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/d/(a-b)^(1/2)/(a+b)^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3853, 12, 3783, 2659, 208} \[ \frac {2 b^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {b x}{a^2}+\frac {\sin (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + b*Sec[c + d*x]),x]

[Out]

-((b*x)/a^2) + (2*b^2*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) + S
in[c + d*x]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3783

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Dist[1/a, Int[1/(1 + (a*Sin[c + d
*x])/b), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3853

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(Cot[e + f*
x]*(d*Csc[e + f*x])^n)/(a*f*n), x] - Dist[1/(a*d*n), Int[((d*Csc[e + f*x])^(n + 1)*Simp[b*n - a*(n + 1)*Csc[e
+ f*x] - b*(n + 1)*Csc[e + f*x]^2, x])/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 -
b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{a+b \sec (c+d x)} \, dx &=\frac {\sin (c+d x)}{a d}-\frac {\int \frac {b}{a+b \sec (c+d x)} \, dx}{a}\\ &=\frac {\sin (c+d x)}{a d}-\frac {b \int \frac {1}{a+b \sec (c+d x)} \, dx}{a}\\ &=-\frac {b x}{a^2}+\frac {\sin (c+d x)}{a d}+\frac {b \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{a^2}\\ &=-\frac {b x}{a^2}+\frac {\sin (c+d x)}{a d}+\frac {(2 b) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac {b x}{a^2}+\frac {2 b^2 \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}+\frac {\sin (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 72, normalized size = 0.95 \[ \frac {-\frac {2 b^2 \tanh ^{-1}\left (\frac {(b-a) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+a \sin (c+d x)-b (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + b*Sec[c + d*x]),x]

[Out]

(-(b*(c + d*x)) - (2*b^2*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + a*Sin[c + d*x
])/(a^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 277, normalized size = 3.64 \[ \left [\frac {\sqrt {a^{2} - b^{2}} b^{2} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - 2 \, {\left (a^{2} b - b^{3}\right )} d x + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{4} - a^{2} b^{2}\right )} d}, \frac {\sqrt {-a^{2} + b^{2}} b^{2} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) - {\left (a^{2} b - b^{3}\right )} d x + {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{{\left (a^{4} - a^{2} b^{2}\right )} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a^2 - b^2)*b^2*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*
x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 2*(a^2*b - b^3)*d*x
 + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d), (sqrt(-a^2 + b^2)*b^2*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*
x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (a^2*b - b^3)*d*x + (a^3 - a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d)]

________________________________________________________________________________________

giac [A]  time = 0.22, size = 126, normalized size = 1.66 \[ \frac {\frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )} b^{2}}{\sqrt {-a^{2} + b^{2}} a^{2}} - \frac {{\left (d x + c\right )} b}{a^{2}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c
))/sqrt(-a^2 + b^2)))*b^2/(sqrt(-a^2 + b^2)*a^2) - (d*x + c)*b/a^2 + 2*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/
2*c)^2 + 1)*a))/d

________________________________________________________________________________________

maple [A]  time = 0.64, size = 102, normalized size = 1.34 \[ \frac {2 b^{2} \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-\frac {2 b \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+b*sec(d*x+c)),x)

[Out]

2/d*b^2/a^2/((a-b)*(a+b))^(1/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+2/d/a*tan(1/2*d*x+1/2*c)
/(1+tan(1/2*d*x+1/2*c)^2)-2/d/a^2*b*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more details)Is 4*a^2-4*b^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 1.31, size = 395, normalized size = 5.20 \[ \frac {a^3\,\sin \left (c+d\,x\right )}{d\,\left (a^4-a^2\,b^2\right )}+\frac {2\,b^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^4-a^2\,b^2\right )}-\frac {a\,b^2\,\sin \left (c+d\,x\right )}{d\,\left (a^4-a^2\,b^2\right )}-\frac {2\,a^2\,b\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^4-a^2\,b^2\right )}+\frac {b^2\,\mathrm {atan}\left (\frac {-a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,1{}\mathrm {i}+b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a^2-b^2\right )}^{3/2}\,2{}\mathrm {i}+b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,2{}\mathrm {i}-a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,3{}\mathrm {i}+a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,1{}\mathrm {i}+a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^6-2\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^4\,b^2+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^2\,b^4}\right )\,\sqrt {a^2-b^2}\,2{}\mathrm {i}}{d\,\left (a^4-a^2\,b^2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + b/cos(c + d*x)),x)

[Out]

(a^3*sin(c + d*x))/(d*(a^4 - a^2*b^2)) + (2*b^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^4 - a^2*b^2
)) - (a*b^2*sin(c + d*x))/(d*(a^4 - a^2*b^2)) + (b^2*atan((b^3*sin(c/2 + (d*x)/2)*(a^2 - b^2)^(3/2)*2i - a^5*s
in(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2)*1i + b^5*sin(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2)*2i - a^2*b^3*sin(c/2 + (d*x)
/2)*(a^2 - b^2)^(1/2)*3i + a^3*b^2*sin(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2)*1i + a^4*b*sin(c/2 + (d*x)/2)*(a^2 - b
^2)^(1/2)*1i)/(a^6*cos(c/2 + (d*x)/2) + a^2*b^4*cos(c/2 + (d*x)/2) - 2*a^4*b^2*cos(c/2 + (d*x)/2)))*(a^2 - b^2
)^(1/2)*2i)/(d*(a^4 - a^2*b^2)) - (2*a^2*b*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^4 - a^2*b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos {\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*sec(d*x+c)),x)

[Out]

Integral(cos(c + d*x)/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________